Human consumption of bacterially contaminated water causes millions of deaths each year throughout the world--primarily among children. While studying the material properties of paper as a graduate student, Theresa Dankovich, Ph.D., discovered and developed an inexpensive, simple and easily transportable nanotechnology-based method to purify drinking water. She calls it The Drinkable BookTM, and each page is impregnated with bacteria-killing metal nanoparticles.More on the drinkable book:
Dankovich will explain her technology and reveal new results of recent field tests conducted in Africa and Bangladesh at the 250th National Meeting and Exposition of the American Chemical Society (ACS). ACS is the world's largest scientific society. The national meeting takes place here through Thursday.
Although silver and similar metals have been known for centuries to have the ability to kill bacteria, no one had put them into paper to purify drinking water, Dankovich notes. While earning her doctorate at McGill University, she found that sheets of thick filter paper embedded with silver nanoparticles could do just that, eliminating a wide variety of microorganisms, including bacteria and some viruses.
She continued her research at the University of Virginia's Center for Global Health, expanding the repertoire of embedded nanoparticles to include ones made of inexpensive copper. Dankovich also began field investigations of water purification applications in Limpopo, South Africa, as well as northern Ghana, Haiti and Kenya.
"In Africa, we wanted to see if the filters would work on 'real water,' not water purposely contaminated in the lab," she says. "One day, while we were filtering lightly contaminated water from an irrigation canal, nearby workers directed us to a ditch next to an elementary school, where raw sewage had been dumped. We found millions of bacteria; it was a challenging sample.
"But even with highly contaminated water sources like that one, we can achieve 99.9 percent purity with our silver- and copper-nanoparticle paper, bringing bacteria levels comparable to those of U.S. drinking water," Dankovich adds.
"Some silver and copper will leach from the nanoparticle-coated paper, but the amount lost into the water is within minimal values and well below Environmental Protection Agency and World Health Organization drinking water limits for metals."
Last year, she formed a nonprofit company, pAge Drinking Paper. In collaboration with the nonprofit WATERisLIFE organization and Brian Gartside, a designer formerly with DDB New York and now with Deutsch, her company developed a unique product that is essentially a book comprised of pages embedded with silver nanoparticles.
Printed on each page is information on water safety both in English and the language spoken by those living where the filter is to be used. Each page can be removed from the book and slid into a special holding device in which water is poured through and filtered. A page can clean up to 26 gallons (100 liters) of drinking water; a book can filter one person's water needs for four years.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We need so much more in the way of water sanitation, but this is a start. I am suspicious about nanotechnology and its effects on humans and other species, but this looks to be somewhat safer and something that is truly intended to be useful rather than just a gimmick. Bottomline however is that bandaids are just that. We should care enough to invest in the same infrastructure for underdeveloped nations to bring them sanitation systems and faucets in their homes as we have in the industrialized world. Doing that instead of spending it on military budgets may not only see the end of much disease and poverty but also terrorism and war.
No comments:
Post a Comment